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AFTERBODY PRESSLTRES ON TWO-DIMENSIONAL BOATTAILED BODIES 

HAVING TLJR3"T BOUNDARY LAYERS AT MACH 5.98 

By W. Frank Staylor and Theodore J. Goldberg 
Langley Research Center 

An  investigation has been conducted on a series of two-dimensional a f t e r -  
bodies t o  determine t h e  e f fec ts  of boa t ta i l ing  and angle of a t tack upon base 
and b o a t t a i l  pressures. 
angles of a t tack up t o  14O were investigated a t  a free-stream Reynolds number 
suf f ic ien t  t o  cause f u l l y  turbulent boundary layers  t o  ex i s t  ahead of t h e  a f t e r -  
bodies. 
resul ted i n  surface Mach numbers from approximately 3 t o  7. 

Afterbodies with b o a t t a i l  angles from Oo t o  18' at 

The models w e r e  t e s t ed  at  a free-stream Mach number of 5.98 which 

A simple semiempirical method i s  presented f o r  estimating base pressures 
f o r  boat ta i led bodies at  angle of a t tack which i s  the  r e su l t  of a correlation 
of base-pressure data from previous s tudies  and the  present investigation. 
This method i s  a modification and extension of previous work and gives a good 
estimate f o r  existing base-pressure da ta  between t h e  Mach numbers of 1.4 t o  6.0. 
The empirical estimation of b o a t t a i l  pressures made possible predictions of 
afterbody drag. A t  zero angle of a t tack  a near minimum afterbody drag w a s  
obtained between the  Mach numbers of 2 t o  6 both experimentally and by calcu- 
l a t i o n  with b o a t t a i l  angles ranging from 6 O  t o  12O. 

INTRODUCTION 

Theoretical and experimental investigations have shown t h a t  afterbody drag 
const i tutes  a substant ia l  portion of t h e  t o t a l  drag on two-dimensional a i r f o i l s  
at supersonic speeds ( fo r  example, see r e f s .  1 t o  11). Chapman (refs. 1, 2, 
and 7) reports t h a t  i n  cer ta in  cases afterbody drag can amount t o  as much as 
three-fourths of t h e  t o t a l  a i r f o i l  drag. A t  high-supersonic and hypersonic 
speeds, theore t ica l  and l imited experimental investigations have indicated 
t h a t  afterbody drag i s  s t i l l  a major design parameter f o r  optimum l i f t -d rag  
prof i les  although i t s  influence i s  somewhat lessened. 

Many of t he  existing two-dimensional afterbody investigations include the  
e f fec ts  of angle of a t tack and boa t ta i l ing  upon base pressure; however, i n  most 
of these studies the  pressures on t h e  b o a t t a i l  surfaces w e r e  not measured. 
Therefore, experimental data f o r  t h e  determination of t o t a l  afterbody-pressure 
drag are limited at supersonic M a c h  numbers and completely lacking i n  t h e  
hypersonic range. The ver i f ica t ion  of existing supersonic methods f o r  



predict ing base pressure at hypersonic Mach numbers has not been possible 
because of t he  lack of such data. 

The purpose of t he  present investigation w a s  t o  obtain hypersonic base- 
and boattail-pressure data a t  angles of a t tack f o r  two-dimensional bodies 
having turbulent boundary layers .  This invest igat ion w a s  l imited t o  turbuler,t 
boundary layers  because previous investigations have shown t h a t  Reynolds num- 
ber had a negligible e f fec t  on base pressure f o r  bodies having f u l l y  turbulent 
boundary layers  (refs. 1, 2, and 9 )  which would be representative of most ful l -  
scale  hypersonic applications.  This invest igat ion w a s  performed i n  the  Langley 
20-inch Mach 6 tunnel a t  a free-stream Reynolds number of 7.7 x 106 per foot .  

SYMBOLS 

component of axial-force coeff ic ient  due t o  afterbody drag 

pressure coeff ic ient  based on free-stream conditions, 
P - Pa 

s, 
P - Pg 

so pressure coeff ic ient  based on conditions ahead of the base, 

b o a t t a i l  length 

Mach number 

s t a t i c  pressure 

dynamic pressure 

surface Reynolds number a t  junction o f  model and afterbody 

surface distance measured from center of base 

model t h i  cknes s 

angle of a t tack 

b o a t t a i l  angle 

equivalent Prandtl-Meyer expansion angle from boa t t a i l  t o  base, 

"1 - "0 
c r i t i c a l  turning angle (see eqs. ( 2 )  t o  ( 4 ) )  

equivalent Prandtl-Meyer expansion angle from model t o  boat ta i l ,  
v~ - vm 
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V Prandtl-Meyer expansion angle 

Subs c r i p t  s : 

00 free-stream conditions 

0 cond-itions ahead of base 

1 conditions ahead of trailing shock 

b conditions a t  base 

m conditions on model surface ahead of boa t t a i l  

min m i n i m  

Superscript : 

I average conditions on base o r  b o a t t a i l  surfaces 

APPARATUS AND TEST MECHODS 

Wind Tunnel 

The present investigation w a s  conducted i n  the  Langley 20-inch Mach 6 tun- 
nel. This tunnel i s  an intermit tent  tunnel t h a t  exhausts through a movable 
second m i n i m u m  t o  atmosphere with the  a id  of an annular e jector .  
pressure and temperature were approximately 400 p s i a  and 400' F corresponding 
t o  a Reynolds number per foot  of 7.7 X 106 f o r  a l l  t e s t s .  
description of t he  tunnel i s  given i n  reference 12. 

Stagnation 

A more complete 

Model and Support 

Presented i n  f igure  1 are sketches and photographs of t he  model, support, 
and afterbodies.  The model w a s  13 inches long, 9 inches wide, and 1 inch th ick  
w i t h  a l 5 O  half-angle wedge nose w i t h  a maximum leading-edge diameter of 
0.005 inch. Afterbody configurations having b o a t t a i l  angles from 0' t o  18O, i n  
3 O  increments, plus one circular-arc configuration were attached t o  the  rear of 
the  model each with 13 pressure o r i f i ce s  located a t  the  midspan. 
t i o n a l  o r i f i ce s  were located on the  model at  the midspan, one on the  upper 
and lower surface. Transit ion s t r i p s  were bonded t o  the  upper and lower sur- 
faces  f o r  a l l  but one of t he  tes t  runs. These s t r i p s  consisted of 0.050-inch- 
diameter g r i t  and were 0.3 and 0.6 inch wide on the  wedge and p l a t e  surfaces, 
respectively, as shown i n  f igure  l ( b ) .  

Two addi- 

The model w a s  supported from i t s  sides i n  the  center of t he  tes t  sect ion 
by four ve r t i ca l  struts and w a s  pivoted about t he  r ea r  struts f o r  angle-of- 
a t tack var ia t ion (see f i g .  l ( c ) ) .  The model w a s  t e s t ed  at  nominal angles of 
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a t tack  of Oo, ?3 , d, kgo, and Ll.2', but t he  ac tua l  measured angles varied a s  
much as 2O from these values as a resu l t  of wind loads on the  model and support. 
A t  both pos i t ive  and negative angles of a t tack the  pressures were equal on the  
windward surfaces; however, small pressure differences were noted on the  lee-  
ward surfaces at  high angles of attack. Therefore, only posi t ive angle-of- 
a t tack data (leeward surface opposite t o  the  support system) are  presented. 

A f l a t -p l a t e  model with s imilar  dimensions w a s  previously tes ted  i n  the 
Langley 20-inch Mach 6 tunnel a t  angles of a t tack  from -8O t o  5' ( r e f .  12) .  
This model had several  o r i f i c e s  located along the  span 2.5 inches from each 
edge, and it was found t h a t  the pressures were constant i n  the spanwise 
direct ion.  

Test Methods and Techniques 

S t a t i c  pressures on the  model and afterbodies were recorded by photo- 
graphing two multiple-tube manometers - one with butyl  phthalate as the  f l u i d  
f o r  measuring pressures l e s s  than 1.0 psia, the  other  with mercury f o r  higher 
pressures. Tunnel stagnation pressure w a s  measured with a Bourdon gage which 
was photographed simultaneously with the  manometers. 
based on a nominal free-stream Mach number of 5.98. 
inaccuracies of  t he  pressure coeff ic ients  are: 

All calculations were 
The estimated maximum 

due t o  Mach number var ia t ion . . . . . . . . . . . . . . . . . . f0.0020 
due t o  pressure measurement errors  . . . . . . . . +0.0015 f o r  Cp,m < 0.12 
due t o  pressure measurement errors  . . . . . . . . +O.OO9O f o r  Cp > 0.12 

EP,W 

KP, a, 

AcP, ,O0 

The angles of a t tack  were s e t  at  nominal angles of Oo, 3 O ,  6 O ,  9O, and 12O, but 
t he  actual  angles as  determined from photographs a r e  believed accurate t o  m.1'. 

RESULTS AND DISCUSSION 

Data Presentation 

Variation of Mach number and Reynolds number.- Presented i n  f igure 2 i s  a 
p lo t  of Mach number on t h e  windward and leeward surfaces of the model as a 
function of angle of a t tack.  
and 12') based on the  r a t i o  of measured s t a t i c  pressure t o  theore t ica l  t o t a l  
pressure behind the  oblique shock are  shown. A comparison of t he  experimental 
Mach numbers obtained with the  Oo and 12O b o a t t a i l s  indicates  t h a t  the  a f te r -  
bodies do not influence flow conditions on the  model. These values agree with 
the  trend of t he  shock-expansion method at all angles of a t tack on the  windward 
surface and t o  about 5 O  angle of a t tack on the  leeward surface beyond which 
angle flow separation i s  believed t o  occur. 
expansion method a re  used f o r  d l  subsequent calculations.  

Shock-expansion and experimental values ( p  = Oo 

Mach numbers obtained by the  shock- 
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The surface Reynolds number at  the  junction of t he  model and afterbody i s  
p lo t ted  against Mach number on the  model surface i n  f igure 3. 
numbers were calculated with the  assumption t h a t  shock-expansion flow existed 
on the  model surfaces. 
investigation conducted i n  the  same tunnel a r e  included i n  f igure 3 i n  order t o  
es tab l i sh  regions of boundary-layer t r ans i t i on  ( r e f .  13) .  
t h a t  these data from reference 13 were f o r  natural  t r ans i t i on  (no roughness) on 
f la t  p la tes  and therefore  had a turbulence l eve l  less than t h a t  of the  present 
investigation. Therefore, t he  boundary layer  at the  junction i s  believed t o  be 
f u l l y  turbulent on the  windward surface and a l so  on the  leeward surface t o  the  
point of flow separation ( a <  5 0 ) .  

The Reynolds 

D a t a  from a previous two-dimensional boundary-layer 

It should be noted 

Pressure dis t r ibut ions.-  Presented i n  f igure 4 a re  the  pressure dis t r ibu-  
t i ons  on t h e  boat ta i led afterbodies a t  angles of attack. The pressures gen- 
e r a l l y  decreased s l igh t ly  on t h e  windward b o a t t a i l  toward t h e  base but were 
essent ia l ly  constant on the  base and leeward b o a t t a i l  f o r  each wedge afterbody 
at a given angle of a t tack.  
ward  surface of t he  circular-arc b o a t t a i l  ( f i g .  4 (h) )  which were due t o  the con- 
tinuous expansion of the  flow along t h e  curved surface. These data are  included 
i n  some of t h e  following figures,  but w i l l  not be discussed fur ther .  
removal of t he  roughness s t r i p s  ( f i g .  4 (e ) )  had l i t t l e ,  i f  any, e f fec t  on the  
afterbody pressures when the  s m a l l  differences i n  angles of a t tack of the  model 
and the  accuracy of the data a re  considered; t h i s  fur ther  substant ia tes  the  
existence of a flr l ly turbulent boundary layer .  

Large pressure gradients existed along the  wind- 

The 

Schlieren photographs.- Presented i n  f igure 5 are  typ ica l  schlieren photo- 
graphs of t he  flow phenomena i n  the  region of the base f o r  t he  Oo, 6 O ,  and 12O 
afterbodies at various angles of attack. 
t o  serve as v isua l  a ids  since no attempt w a s  made t o  measure flow angles and 
compare them with theore t ica l  o r  other experimental values. 
of t he  photographs i s  poor; however, the  boundaries of t he  base wake and the  
t r a i l i n g  shock waves may be seen i n  most cases. 
leeward surface a re  ident i f ied  as the  dark regions above the  afterbodies and 
appear t o  separate from the  surface a t  the higher angles of attack. 
spots i n  the  lower right-hand corner of the photographs were caused by chips i n  
t h e  tunnel windows. 

These photographs a r e  included only 

The general qual i ty  

The boundary layers  on the  

The dark 

Prediction of Afterbody Pressures 

Windward boa t ta i l . -  The experimental pressures were not constant along the  
windward surface of the  wedge b o a t t a i l s  but a r e  t r ea t ed  as an integrated average 
pressure i n  fur ther  discussions since the var ia t ions were usually s m a l l .  I n  
f igu re  6 the  experimental average pressures f o r  these surfaces a r e  presented 
and compared with those calculated by the  shock-expansion method. Both the  
experimental and calculated pressures increase with angle of a t tack and decrease 
with b o a t t a i l  angle, as one might expect; however, t h e  shock-expansion method 
generally underpredicts t h e  experimental pressures. 
apparently caused by the  f a i l u r e  of t h e  flow t o  expand through the  full boat- 
t a i l  angle p .  
cause of t h i s  apparent underexpansion of t h e  flow. 

This underprediction i s  

Boundary-layer growth and/or separation are believed t o  be the  
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The equivalent Prandtl-Meyer expansion angles E necessary t o  calculate  
t he  eqer imenta l  average pressures on the  b o a t t a i l s  are  given i n  f igure  7 as a 
function of p and &. Also, data a re  included from a s imilar  boa t ta i led  
afterbody invest igat ion conducted at  a supersonic Mach number (% = 2.30) at 
zero angle of a t tack ( r e f .  5 ) .  
equivalent turning angles a re  generally l e s s  than 
increased surface Mach number h. I n  the absence of such data, one would 
normally assume t h a t  the  flow had expanded through t h e  ful l  angle 
could r e su l t  i n  la rge  pressure and Mach number e r rors  on the  b o a t t a i l  surfaces.  
Therefore a simple empirical equation, 

It i s  seen t h a t  f o r  a given b o a t t a i l  angle t h e  
p and decrease with 

p which 

E = (1.39 - O.lg%)p (1) 

T4, Y 

i s  presented which, with reasonable accuracy, can be used t o  estimate the  
turning angles obtained experimentally. Equation (1) w a s  used t o  calculate  the 
pressures on t h e  Oo, 6 O ,  12O, and 18O windward b o a t t a i l  surfaces, and the  
r e su l t s  a re  shown i n  f igure 8. The estimates show good agreement with the  data 
and are  a de f in i t e  improvement over the  shock-expansion method (E = p )  shown 
i n  f igure 6 .  

- Base.- Numerous two-dimensional base-pressure investigations conducted at 
low-supersonic speeds have supplied data from which various theoret ical-  and 
empirical-prediction methods were conceived. Essentially, most of these methods 
a re  concerned with predicting the  flow-expansion angle at  the model base from 
which base pressure can be calculated. 
u t i l i z e s  the  analogy between forward- and rearward-facing s teps  t o  determine a 
c r i t i c a l  turning angle 6 which i s  equal t o  the  expansion angle y at the  
base of a nonboattailed body ( p  = O o )  a t  zero angle of a t tack.  
i s  represented by the  equation 

A method proposed by Love ( r e f .  3 )  

"his proposal 

6 = y  ( 2 )  

and can be visualized by an inspection of sketch 1. 
( r e f .  6)  have fur ther  proposed t h a t  the  c r i t i c a l  turning angle may be used t o  
estimate base pressures on boat ta i led bodies at zero angle of a t tack with the  

Cortright and Schroeder 

6 

Sketch 1 
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assumption t h a t  6 
Their or ig ina l  proposal i s  given by the  equation 

i s  a f'unction only of t he  Mach number ahead of the base. 

6 = 7 + P  ( 3 4  

but i n  the  following discussions f3 i s  replaced by E (see sketch 2) giving 
the following equation: 

-6 

Sketch 2 

Presented i n  f igure 3 are  the  c r i t i c a l  turning angles calculated both from 
experimental base-pressure data (a = Oo; p 2 Oo) with the  use of equations (1) 
t o  ( 3 )  and from fasward-facing-step data (see r e f .  3 ) .  The base-pressure coef- 
f i c i e n t s  shown i n  f igure 10 were determined by expanding the flow at  a Mach 
number of Mo through the  appropriate angle 6 obtained from f lgure 9. The 
plain and flagged symbols i n  these f igures  denote pressure data  (a = O o )  f o r  
p = 00 and j.3 > Oo, respectively. I n  the  present study it i s  proposed t h a t  
the  c r i t i c a l  turning angle may fur ther  be used t o  estimate base pressures on 
boat ta i led bodies a t  small angles of a t tack (see sketch 3 )  w5th the  use of the 
e quati  on 

It i s  assumed t h a t  the base pressure i s  primarily a function of the  flow con- 
d i t ions  on the  windward surfaces and t h a t  both 6 and E are  determined from 

Sketch 3 
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these conditions. Cr i t i ca l  turning angles w e r e  calculated with equation (4)  
from pressure data  at  angles of a t tacks up t o  14O and then were converted t o  

vdues. These data  are denoted as so l id  symbols i n  f igure 10, and the  
va l id i ty  of t he  present proposal may be seen. 
cP, 0 

Equation (4 )  reduces t o  equations (2 )  and (3b) when t h e  appropriate terms 
are dropped t o  satisfy the  requirements or ig ina l ly  proposed by Love (a = p = O o )  
and C0rtrigh.t and Schroeder (a = O o )  . Therefore, equations (1) and (4 )  together 
with f igure  9 can be used t o  estimate t h e  base pressures on boat ta i led bodies 
at angles of a t tack from Mach numbers of 1.4 t o  6.0. An example calculation 
i s  presented i n  the  appendix t o  c l a r i fy  d e t a i l s  t h a t  are not discussed here. 

I n  f igure  l l ( a )  experimental base values are  presented and com- 

pared with the  calculated values f o r  b o a t t a i l  angles of Oo, 6 O ,  1 2 O ,  and 18O. 
The agreement i s  very good f o r  afterbodies with s m a l l  b o a t t a i l  angles through- 
out t he  angle-of-attack range of  t he  investigation. The present method over- 
predicts base pressures on t h e  p = l 5 O  and p = 180 afterbodies which can 
be a t t r ibu ted  t o  t o t a l  separation of t h e  flow from t h e  boa t t a i l  surfaces. The 
pressures were essent ia l ly  equal on a l l  surfaces of these afterbodies at  s m a l l  
angles of a t tack ( f igs .  4 ( f )  and 4 (g ) )  which indicates  t ha t  t h e  flow had sep- 
arated a t  t he  junctions of t he  model and afterbodies.  
not sense the  existence of these afterbodies and t h e i r  base pressures, i n  
general, can be b e t t e r  predicted by t h e  p = Oo base-pressure estimate (see 
sketch 4) .  

I n  effect ,  the  flow does 

Sketch 4 

Leeward boat ta i l . -  Experimental leeward boa t t a i l  C; values are pre- 
,O0 

sented i n  figure l l ( b )  along with estimated values which are complicated by 
flow separation occurring forward of t h e  afterbody at  
may be used t o  estimate the  pressures on the leeward boa t t a i l  surfaces i n  a 
manner s i m i l a r  t o  t h a t  employed f o r  t h e  windward surfaces when the  flow i s  
believed t o  be attached. 
sure i s  approximately equal t o  t h e  base pressure a t  high angles of attack; 

a >  5 O .  Equation (1) 

Experimental data show t h a t  the  leeward boa t t a i l  pres- 
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these pressures are approximated by the  base-pressure values when the  flow i s  
believed t o  be separated forward of t h e  afterbody. 

A f t  erbody Drag 

Experimental and estimated components of axial-force coefficient due t o  
afterbody drag obtained from integrat ion of t he  experimental and estimated 
pressures over t h e  afterbody surfaces are presented i n  figure 12. A t  zero 
angle of attack, afterbody drag w a s  reduced from 0.0256 f o r  
0.0195 (25-percent reduction) f o r  
afterbodies decreased with increasing angle of a t tack with m i n i m u m  drag 
occurring on t h e  12O afterbody. A t  a = 130 afterbody drag w a s  reduced as 
much as 70 percent as the  result of boa t ta i l ing  t h e  model. 
drag coefficients are  well  predicted by the  present estimates f o r  
are underpredicted f o r  la rger  angles because of flow separation. 
mentioned, a b e t t e r  estimate may be obtained f o r  t h e  la rger  boa t t a i l  angles by 
assuming t h a t  the  
w a r d  boa t t a i l  surfaces. 

p = Oo t o  about 
j3 = 6 O ,  go, or 12O. D r a g  on the  boat ta i led 

The experimental 
j3 5 12' but 

A s  previously 

p = Oo base-pressure estimates ex i s t  on the  base and lee- 

Experimental and calculated minimum afterbody-drag coeff ic ients  and t h e i r  
associated b o a t t a i l  angles at zero angle of attack are presented i n  f igure 13.  
These coeff ic ients  a re  based on afterbody length-to-height r a t i o  of 1.15 which 
approximates the  models used f o r  t he  present investigation and f o r  those of 
reference 5. 
re la t ive ly  insensi t ive t o  b o a t t a i l  angle within k3'; minimum drag occurred 
both experimentally and theore t ica l ly  at approximately 
Mach numbers of 2 t o  6. 

+ 

Experimentally, t h e  minimum drag coeff ic ients  were found t o  be 

p = go between t h e  

CONCIUDING RENARKS 

Afterbody pressures have been investigated a t  a free-stream Mach number 
of 5.98 along a ser ies  of two-dimensional boat ta i led bodies at  various angles 
of a t tack.  A simple semiempirical method f o r  e s t ima t ing  base pressures f o r  
boat ta i led bodies a t  angle of a t tack with turbulent boundary layers  i s  pre- 
sented which i s  a modification and extension of previous methods. 
method i s  the  r e su l t  of a correlat ion of base-pressure data from previous 
studies and the  present investigations and gives a good estimate f o r  these data 
between the  loca l  Mach numbers of 1.4 t o  6.0. Pressures on the boa t t a i l s  
could not be predicted by t h e  Prandtl-Meyer method by assuming t h a t  t he  flow 
ahead had turned the  f u l l  b o a t t a i l  angle; therefore, an empirical equation 
i s  presented which r e l a t e s  t h e  equivalent turning angle as a function of boat- 
t a i l  angle and Mach number ju s t  ahead of the  boa t t a i l .  

The present 

It w a s  found t h a t  base drag can be substant ia l ly  reduced with t h e  use of 
A t  zero angle of a t tack  a near minimum short  length, boat ta i led afterbodies. 

drag w a s  obtained between t h e  loca l  Mach numbers of 2 t o  6 both experimentally 
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and by calculation with b o a t t a i l  angles ranging from 6’ t o  12’. 
attack, m i n i ”  drag w a s  obtained experimentally with 12O b o a t t a i l  f o r  the 
present investigation. 

A t  angles of 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., February 29, 1964. 
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APPENDIX 

EXAMPLE CALCULATION 

Presented here i s  an example of the calculation procedure f o r  obtaining 
b o a t t a i l  and base-pressure coeff ic ients  by the  method presented i n  t h e  body of 
t h e  report. Example calculations are made f o r  t he  two-dimensional boat ta i led 
body shown i n  sketch 5 f o r  a free-stream Mach number of 5.0. 
of a t tack and boa t t a i l  angle are 5 O  and t h e  short boa t t a i l  length ( 2 / t  = 1.15) 

Both the  angle 

= 5.0 P = 5 O ,  

Sketch 5 

i s  consistent with the present analysis.  It i s  assumed t h a t  t h e  boundary 
layers  are f u l l y  turbulent on both t h e  windward and leeward surfaces ahead of 
t h e  boa t t a i l s  and t h a t  t h e  shock-expansion method-can be used t o  calculate t he  
flow properties on these surfaces. These properties are: 

- 
Windward : 

% = 4.22 vm = 6 8 . 5 8 O  pmp,  = 1.80 

With the  use of equation (1) ( E  = (1.39 - O . l 9 % ) P ) ,  t he  equivalent 
Prandtl-Meyer expansion angles can be calculated which will allow t h e  computa- 
t i o n  of t he  other flow properties on t h e  boa t ta i l s :  

Windward: 

E = k.39 - 0.19(4.22)) x 5 O  = 2.95' vo = 6 8 . 5 8 O  + 2.95O = 71.53' 

= 0.0176 Mo = 4.47 popm = 1.31 %, 



Leeward: 

E = E.39 - O.lg(g.55g X 5 O  = 1-68' vo = 81.64' + 1.68O = 83-32' 

PO/p, = 0-41 cp,w = -0.0336 % = 5.77 

As s ta ted  prevtously i n  t h e  text, t h e  base pressures were found t o  be 
primarily a f " t i o n  of t he  flow properties on the  windward boat ta i ls ;  there- 
fore, a c r i t i c a l  turning angle 6 of 9.35O i s  obtained from f igure 9 f o r  the  
windward b o a t t a i l  Mach number of 4.47. 
be evaluated by calculating 7 

The base-pressure coeff ic ients  can now 
(see sketch 3) i n  equation (4) .  

7 = 6 + u - E = 9.35O f 5.00' - 2.95' = 11.40' 

- 71.53' + 11.40' = 82.93' v1 - 

The ax ia l  component of afterbody-drag coeff ic ient  f o r  a un i t  span is, 

assuming t h a t  t h e  flow i s  attached t o  the  leeward surface ahead of the  boat- 
ta i l .  If it were assumed t h a t  the  flow i s  separated from t h i s  surface, t he  
leeward b o a t t a i l  pressure coefficient,  -0.0336, should be replaced by the base- 
pressure coefficient,  -0.0394. The resu l t ing  afterbody-drag coefficient would 
therefore be s l i g h t l y  increased t o  0.0337. 
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(a) Sketches of model and afterbodies. 

Figure 1.- Sketch and photographs of model, support, and afterbodies. 



(b )  Model and afterbodies.  

Figure 1.- Continued. 
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( e )  Model-support assembly. 

Figure 1.- Concluded. 
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Figure 2.- Variation of Mach number on windward and leeward model surfaces  with angle of a t t ack .  
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Figure 4.- Afterbody pressure d i s t r i b u t i o n s  a t  various angles of a t t a c k  f o r  a s e r i e s  of b o a t t a i l  
af terbodies .  
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(b) B = 3'. 

Figure 4.- Continued. 
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Figure 4.- Continued. 
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Figure 4.- Continued. 
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( e )  p = 12'. 

Figure 4.- Continued. 
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Figure 4.- Continued. 
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Figure 4.- Continued. 
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Figure 4.- Concluded. 
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L-64-418 Figure 5.- Schlieren photographs of flow phenomena in region of base. 
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Figure 6.- Effect  of b o a t t a i l i n g  on windward b o a t t a i l  pressures at various angles of a t tack .  
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Figure 9.- C r i t i c a l  turning angle as a func t ion  of Mach number ahead of base. 
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Figure 10.- Summary of base pressure as a function of Mach number ahead of base. 
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(b )  Leeward b o a t t a i l  pressures.  

Figure ll.- Effect of boa t t a i l i ng  on base and leeward b o a t t a i l  pressures a t  various angles of 
a t t ack .  
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Figure 12.-  Afterbody drag as a func t ion  of b o a t t a i l  angle and angle of a t tack .  
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